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Abstract A malware mutation engine is able to transform a maliciowgypam to create a different version of
the program. Such mutation engines are used at distribsitiesor in self-propagating malware in order to create
variation in the distributed programs. Program normailizais a way to remove variety introduced by mutation
engines, and can thus simplify the problem of detectingavarstrains. This paper introduces the “normalizer
construction problem” (NCP), and formalizes a restrictauirf of the problem called “NCP=", which assumes a
model of the engine is already known in the form of a term rémgisystem. It is shown that even this restricted
version of the problem is undecidable. A procedure is predithat can, in certain cases, automatically solve
NCP= from the model of the engine. This procedure is analyzeaxbnjunction with term rewriting theory to
create a list of distinct classes of normalizer construcgimoblems. These classes yield a list of possible attack
vectors. Three strategies are defined for approximateigsnfubf NCP=, and an analysis is provided of the risks
they entail. A case study using ti82. Evol virus suggests the approximations may be effective in joaéor
countering mutated malware.
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1 Introduction

Malicious programs—worms, viruses, Trojans and the likee-edllectively known as “malware” [27]. In 1989,
Cohen [10] anticipated that self-mutating malware woulé day be created: the malicious program would be
able to transform its own code so as to create variants dff i&g years later, such self-mutating viruses began to
appear [25]. Variants created by such malware might stilave like the original program, but their code could
be different. For example, an early mutating virus call®d. RegSwap rewrote itself so that use of one general-
purpose register was swapped for use of another [25]. Mgrkisticated program-to-program transformations
have been used over the years, including substitution afelgmt code, insertion of irrelevant instructions, and
reordering of code without ordering dependencies [30].rAfram being carried by self-propagating malware,
mutation engines can also be used at hosts distributingonopagating malware.

Mutation was introduced in order to evade malware detecidrs variety introduced by the mutation has the
potential to create tremendous detection challenges.rlicpkar, if a detection technique relies on recognizing
some pattern of features, and the mutation engine servesddynthese features, the detector can be defeated.
For instance, if a detector relies on matching a “signat(aa’identifying pattern) of bytes or system calls, then
the mutating transformations may alter those bytes or systls such that the pattern no longer matches. An
approach to counteracting the effects of mutation isdomalizethe input programs in order to try to remove the
variety that challenges the pattern matching. Arguably,‘rerfect” normalizer would transform all varieties of
any family to a single form. We call the problem of creatingoamalizer for a family of variants the “normalizer
construction problem” (NCP).
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Several different malware normalizers have been createkhftiaet. al[21], Christodorescet. al [9], Br-
uschiet. al[6]). To date, these efforts have proceeded without a thieatdasis from which to understand the
prospects for success. The situation is troubling becdlselready suspected, via Chess and White [7], that
perfect detection of all variants of a mutated malware faisiimpossible even when one is provided a sample
variant from the family. However, perfect normalizers acsgible if one restricts conditions sufficiently well.
As a simple existence proof, consider that perfect norratin is straightforward for self-mutating programs
such as®5. RegSwap mentioned above. So important questions are: (1) can weede$eful classes of nor-
malization problems for sets of variants created by mutagiogines?, (2) is perfect normalization possible in
pragmatically interesting cases?, and (3) what can be dwr@dsses that provably cannot be perfectly normal-
ized? This paper addresses all three of these questionstemiiices a new approach to generating normalizers
from models of mutation engines.

A restricted version of the NCP is formalized using the teafrterm rewriting [3]. This restricted problem
is denoted “NCP=", and is a restriction in two ways. Firsggsumes one has an accurate model of the mutation
engine in the form of a term rewriting system. In the unrestd normalization problem, such a model is not
assumed: it must either be unnecessary, or else it must érstdated—Dby inferring the transformations from
multiple samples, reverse-engineering the rules from tiggne itself, etc. Second, NCP= is restricted to those
cases where the rewrite rules are all semantics-presetSoiging NCP= involves creating a TRS that induces
the same=quivalence classexs the self-mutating program such that itenvergenti.e., that the normalizer is
terminatingandconfluent The theory of term rewriting is used to show that NCP= is widkble.

Because NCP= is undecidable, no procedure can exist whighasanteed to halt and produce a correct
normalizing transformer. In practical terms, howeverhalpe need not be lost. Procedures may be defined that
solve it in some circumstances, so it may be practically irgpd to have such procedures at hand. A two-
phase normalizer construction procedure is defined thatwilk for certain classes of self-mutating programs.
It is based on two well-known term rewriting procedures. Aeatudy using the well-knownB2. Evol virus
demonstrates that this procedure can fail in realisticicistances, while also demonstrating that is nevertheless
possible to construct perfect normalizers—in our case byuakintroduction of suitable rules that can be said
to “complete” the rule set with respect to the normalizatogine.

Three approximation approaches to NCP= are introducedroXopate solutions may be desirable in cases
where it is impossible or impractical to either construceaact normalizer, or to correctly evaluate conditions
in a conditional normalization rule system. The approxioratipproaches are: (1) using “incomplete” rule sets,
(2) using a priority scheme, and (3) ignoring conditionsamditional normalization rule sets. A second part of
the case study on82. Evol demonstrates that the NCP= problem is not so restrictedttisatininteresting in
practice, shows the problem of approximation is practyoadlevant, and illustrates the promise of the priority-
based approach to approximation.

Sectior? provides background on the NCP, and formalizeBl@= using term rewriting theory. The sec-
tion also introduces the fallible two step procedure fovism NCP=. Sectiofll3 introduces the approximation
solution strategies. Sectifth 4 describes a case study t&ig2. Evol virus which sought to evaluate the gen-
eral feasibility of the term-rewriting based normalizatimpproach, and to examine the efficacy of the different
approximations. Sectidd 5 documents relations to othekw@onclusions are drawn in Sectigh 6.

2 The problem of normalizing mutants

Self-mutating malware may be conceptually decomposedtimbocomponents: autation engingwhich per-
forms program-to-program transformations, angbatload which is the body of code that implements the ma-
licious behavior. Many malicious programs are structyrdécoupled in this way, since the separation makes it
possible to easily reuse a given mutation engine by attgahito a different payload. The scope of this paper
are those mutation engines that transform the malware sthinarogram code itself changes; these were called
“metamorphic” by Szor and Ferrie [30]. Existing mutatiargées have targeted their attacks on malware detec-
tors that utilize signatures defined over the program’s feiima., itssyntax The engines modify the code bodies
during replication with the intention of ensuring that saures cannot be constructed which match all variants
the engine can produce. Following Cohen [10], we call thesatl such variants the “viral set”. For such mal-
ware, multiple signatures would be required, as illusttaterig.[I(a@). When the number of signatures required
grows sufficiently large, the signature-based methods mi&yof provide adequate detection rates for the entire
viral set. In the worst case an unbounded number of sigretureerequired to match all possible variants.
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Fig. 1 Intended effect of normalization: pattern space simplifaca

Several different approaches have been proposed for oiefenutating malware. One such approach at-
tempts to detect variants within the viral set by matchingedacet that may not be easily disguised by muta-
tions. Perhaps the best known is the use of signatures basshwe type of behavior rather than form. The merit
of this approach stems from the empirical fact that curreatation engines tend to Hdeehavior-preserving
that is, they modify their form while keeping the behavionstant or nearly constant (at least, when considered
at some level). Signatures defined on behavior may be matgtiest by dynamic or static analysis. Dynamic
analysis frequently entails emulating or tracing the paoggs while looking for telltale call sequences or data
use [29]. Indeed, emulation-based signature matching waobthe techniques that commercial detectors used
to detectv82. Evol , a parasitic self-mutating virus [29]. Published statichtgiques for matching behavior in-
clude those by Singkt. al [26], Christodorescet. al [8], Kruegelet. al [19], and Kinderet. al [17]. While
behavior-based signature detection has been successilah ihas its share of problems. Regardless of whether
it is done statically or dynamically, it can be costly, erpgone, and introduces its own set of vulnerabilities and
limitations.

A second approach to detecting mutating malware is to use powerful pattern matching to define and
match the signatures. The intent is to permit the use of merei@gl signatures, namely ones that match any
variantin the viral set. This strategy was used to catclysaif-mutating malware. In the caseW#f5. RegSwap,
for example, certain malware detectors were enhanced twilseard based matching, allowing them to match
variants regardless of their specific assignment of regi$89]. While the benefits of more powerful matching
are clear, adding the power can introduce its own set of problalso. These include: increased cost of matching,
and difficulty in specifying patterns that precisely matdtvariants in the viral set, but no other programs.

A third approach to detecting mutating malware is to try tomalize the input programs. Because normaliza-
tion removes unimportant variations, it may allow less pdulgattern matching to be (or remain) effective. As
illustrated in Fig[I(g), the goal is to shrink the effectimput space—from the original viral set to a smaller set—
thereby decreasing the variations a detector needs todmrdhiring recognition. The normalization approach to
matching self-mutating malware was exemplified by the meittad Lakhotiset. al[21]. As a proof-of-concept,
Lakhotiaet. aldeveloped a “generic” normalizer f@programs—i.e., one not tuned to any particular mutation
engine. It removed variations via program transformatigunsh as expression reshaping and constant propaga-
tion. These are techniques common to optimizing compileedso employed the strategy of imposing order on
unordered items, such as reordering instructions in a fixad While this approach was shown to be unable to
reduce all variants in a family to a single form, Lakhagtaalreported a massive reduction in the number of pos-
sible normalized forms: from 18° possible forms to 13¥. Other malware normalization methods have also been
proposed using compiler-like transformations, includBigistodorescet. al[9] and Bruschet. al[6]. None of
these approaches required—nor took advantage of—know/kgalgut the specific mutation engine producing the
variants.

Though these normalizers are important first steps, questidse as to how well one these approaches will
fare. It might be hoped that the transformations will cdilesly result in only a few normal forms for all the
variants. But what guarantees can be had, and in what consliian a “perfect” normalizer be constructed?
Exploration of such questions has been limited to eitheterattical analysis of the reduction in space of
variants (Lakhotiat. al[21]), or empirical studies of pragmatic effectivenessigdimited case studies (Lakhotia
et. al[21], Christodoresceet. al [9], Bruschiet. al[6]). No theoretical analyses of the problem have been able
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to answer the key open questions: (a) When are perfect nizemapossible? (b) How can they be constructed?
and (c) If they are not possible then what approximate smigtare feasible?

The remainder of this section introduces key problems imadizing self-mutating programs, and formalizes
the NCP= using term rewriting theory. Required definitiormsf term rewriting theory are recalled, and a two-
step procedure is defined that can be used to try to solve thi&=NI& possible application is discussed, and a
selection of relationships between NCP= and other normu#dia problems are listed.

2.1 How not to “reverse” a transformation set

The normalizers of Lakhotiat. al[21] and Bruschet. al[6] applied “generic” transformations in the sense that
they are not tailored specifically for a given mutation eregldnfortunately, at the momentit is not clear that they
would normalize variants to a single normal form. Perhapgnerality of the transformation set is a liability?
One might wonder whether it is possible to correctly noreefpirograms by choosing transformations tailored
to an already-known mutation engine. While such normadizeyuld not provide a general solution, they might
still be practical due to the limited number of engines negdiormalizers. Powerful mutation engines have been
written by few authors, are thus rare, and are not known tdvev@pidly [29]. This is likely due, in part, to
the difficulty even experts have in designing and writingreot program transformers (cf. the extensive work
on compiler verification [13]). So while mutation enginessjgic normalizers would not provide a universal
solution, they may nonetheless form a useful part of a pralotiefense regime.

If one already knows the transformations a mutation engées uperhaps the naive approach of simply “re-
versing” all the transformations would yield an effectivemalizer? That is, ifA — B appears in the mutation
engine (i.e., statements$ are transformed into statemer®3, could one not create an effective normalizer sim-
ply by applyingB — A for all such rules? So, for example, suppd3és a self-mutating program\/ is the
mutation engine of?, andS(P) is the set of possible variants #fthat can be created through transformations
of M. The essence of the naive approach is: since any elemef{tfih must have been created through some
sequence of transformatiofis = mi, mo, ..., mg, if One reverses the transformations that were applied then
one would “undo” the variations, yielding the original pragn P again. That is, the idea is that the invers@of
namelyT' ™ = my, mi_1, ..., m; could be performed by reversing the transformationsfofWhile the scheme
may appeaprima faciesound, and it might be made to work well enough in select oistances [20], it will
not work in general. The problem is that reversing the dioacdf the transformations af/ fails to guarantee
correct reversal df".

The limitation of this naive approach is illustrated usimgexample subset of transformations selected from
the virusWa2. Evol . The example selection is Figl 2. The disassembly of thenpareode (in IA32 code) is
shown in the left column and the corresponding transfornféxgbieng code in the right column. The parts of
the code changed in the offspring are shown in bold face. frestormation shown in Fifl 2(a) replaces the
“mov [edi], 0x04” instruction with a code segment that saves the value oktegicx by pushing it onto
the stack, moveBx04 into ecx, and then into the memory location pointed todadi , and finally restores the
previous value ofcx by popping it from the stack back int@x. The transformation shown in Fig. 2(b), replaces
the “push 0x04" instruction with a code segment that mowe®4 into registereax, which it then pushes onto
the stack. The transformation shown in Hify. 2(c) insemsv“ eax, 0x09” which, because of the specifics of
WB2. Evol , is a “junk” or irrelevant statement—i.e. one that has nee@fbn the computation. Note that none
of these transformations will affect program semantichimdrdinary sense (i.e., ignoring such nuances as new
memory faults due to increase in code size, measurabledtiffes in performance, self-inspecting or modifying
code, etc.).

Inspection of the transformations shown in . 2 reveatsesproblems that can arise if one naively applies
the transformations in reverse. Consider, for instanaehttpothetical sequence

mov eax, 0x04 ; push eax ; mov eax, 0x09

which can be part of the output of either of the transformti(h) or (c) from FiglR2. The normalizer must be
able to decide which of transformations (b) or (c) to applsewverse; that is, it must correctly decide which of the
transformations created the observed code. If it canneintrerse ofl” will not be created, and the normalization
may be incorrect. More specifically, if it applies the wromgrisformation then it may either transform a non-
variant into a variant, or transform a variant into a noniaat. In such cases, no one unique normalized form
is guaranteed for all variants. For example, if thev eax, 0x09 in the hypothetical sequencensta junk
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Parent Offspring (transformed)  Brief Description
push eax
push eax push ecx Use temporary register
(@ nmv J[edi], 0x04 nmov ecx, 0x04 to transfer immediate value
jmp | abel nov [edi], ecx
pop ecx
jmp | abel
push 0x04 nov eax, 0x04 Immediate push turned into
(b) mov eax, 0x09 push eax push through dead register
jmp | abel nov eax, 0x09
jmp | abel
mov  eax, 0x04 mov eax, 0x04
(c) push eax push eax “Junk” code insertion
jmp | abel nov eax, 0x09
jmp | abel

Fig. 2 Three sample transformations fraf82. Evol

instruction, then applying transformation (c) in reversmoves a non-junk instruction, which yields a different
program, which means it should not be $tP), and the transformation is incorrect. Similar transfoiiorat
choice problems can also arise when transformations muast @t a specific order.

The above issues of transformation selection, orderinigiugnnormalized forms, and ensuring equivalence
are dealt with elegantly by the theories of term rewritingteyns. Using these, it is possible to formalize NCP=
terms of constructing what is called a “convergent rule st satisfies specific equivalence properties.

2.2 NCP= as a term rewriting problem

Some definitions and results from term rewriting are regliféhe reader is referred to Baadsr al [3] for
detailed explanations.

Terms, subterms, atomic, and ground.
For appropriately chosen domaitssmsare constants, variables, functions, or functions on tefins term
multiply(2, add(3,1)), for example, is built using the binary functiondd andmultiply on integers and
the constant integers 2, and3. A term¢ may contain other terms; these atgtermf ¢. An atomicterm
is one that does not contain subtermgyrAundterm is one that does not contain variables.

Term rewriting system (TRS).
A term rewriting systens a set of rewrite rules. Aewrite rule s — ¢ maps ternms to term¢. A conditional
TRS is one that has conditions attached to its rules. Theiontg| R means that rulé: may be applied only
when conditiorp holds. Fig[B shows a simple example of an unconditional TRS.

Reduction relation (—1).
A TRS T induces a relation~7 on terms, which is also denoted where clear from the context. Given
termss andt, — is defined as followss — ¢ holds iff, for some rewrite rule’ — #', s has, as a subterm,
an instance of’ which, if replaced with its corresponding instancé’eturnss into ¢.

Equivalence relation (——).
The — relation on terms induces an equivalence relatién defined by the reflexive symmetric transitive
closure of—. «“— partitions the set of terms into equivalence classes. Gw@RST, [t]r denotes the
equivalence class of terfrunder——.

Normal form.
If a termt is not related to any other term underr, thent is said to be imormal formwith respect the
rewriting systenil”. Normr(x) is the set of terms ific] which are in normal form. For the TRS in F[g. 3,
the termadd(2, 2) is in normal form, and.dd(1, add(1, 1)) —r add(1, 2) by application of the rule mapping
add(1,1) to 2.

add(1,1) — 2; add(1,2) — 3; add(0,3) — 3

Fig. 3 Sample rewrite rules
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Termination.
A TRST is terminating if there exists no infinite chain of reducsdhy — to — t3---).

Confluence.
Let z, y and z denote arbitrary terms. Suppose there is a sequence otatiplis of rewriting rules that
reducese to y and another sequence that redueés z. The system is confluent if every sughandz are
joinable Two termsy andz are said to be joinable if there is a sequence of applicatbreswvriting rules that
reducegy andz to some termw. Confluence of a TRS is, in general, undecidable, althoughdecidable
for finite, terminating TRSs [3]. In the general case, thebpgm of converting an arbitrary TRS into an
equivalent one that is confluent is undecidable regardiiesfether it is conditional or not.

Convergence.
A TRS isconvergentf it is confluent and terminating. If a TRE is convergent then it can be used to decide
membership in any of the equivalence classes defined by This can be done by repeatedly applying the
rules of T' (in arbitrary order) to any given input; this process is guaranteed to result in the normal form
that is unique tor's equivalence class. Testing membership in cta®en becomes a matter of comparing
the normal form ofx to the normal form associated with all members of claséthe normal forms of the
two terms differ, they are in different equivalence classes

For a certain class of semantics-preserving mutation esgihwill be possible to use a TRS to model the
transformation behavior of the engine. This can be donerftinary machine languages by modeling instructions
as terms that consist of a function applied to one or moreakas or constants. The function is the operation
(mov, push, etc., complete with mode of the operation) and the vargahled constants are the registers and
immediate operands. A program (or a code segment) is a tetanel by applying @oncat enat e function
(written *;”, or using a new line) to such terms. We considetyothose engines that are, in fact, semantics-
preserving.

This formalization of the mutation engine closely matchnesgrior formalization of viral set constructors via
formal grammars by Zuet. al[15]. In their formulation, the viral set is generated by aconditional rewriting
rule set that transforms strings of both terminal and nomiteal characters (as compared to term rewriting
entities of functions, variables, and constants). Nalynaal mutation engines always transform terminal ssing
to other terminal strings. Our approach models the mutatiggine as first mapping terminal symbols to non-
terminals, i.e., from concrete specific registers or coristto non-terminals. A similar approach in the formal
language formalization would be to assume rules that teansterminals to non-terminals.

Fig.[ gives an example of how a transformation of a mutatiogiree may be formalized as a rewrite rule.
The rule in the figure is not a conditional one: its left hardesif interpreted as a code segment, is semantically
equivalent to its right hand side, no matter its contextsThialso true for the first rule of Fifl 2. Other rewrite
rules may need to be conditional in order to accurately mthaetondition-sensitivity of the mutation engine’s
transformations. Examples of these are shown infFig. 2(@Jégured2(c). Conditions are written as predicates to
the left of the left hand side. For simplicity, we will henoeth write rules in assembly language with embedded
term variables, rather than in the function applicatiomf@hown in Fig[h.

push (reg?;
mov  (reg2 imm;
mov  (regl reg?);
pop (regd

mov (regl, imm —

Fig. 4 Code substitution rewrite rule

Assume a mutation enging is aclosed-worldengine, meaning that it operates without using external in-
formation. Assume further thaf can be modeled as a term rewriting system as abovelLefenote a TRS
modeling enging. The equivalence relation induced By partitions terms into equivalence classeslMfis
convergent, then it can be used to decide whether two terarsdy belong to the same equivalence class by
verifying that their normal forms (with respect id) are equal. A convergent/ implies that any sequence of
transformations of any variant will eventually result iretfa priori computable) normal form of the program. A
convergent\/ therefore essentially defeats the purpose of mutatioheamalicious program will fail to create
distinct variants once it transforms itself into its norrf@im. A convergeni\/ also provides a potential way for
the detector to recognize the program (i.e., by applyingtiaévare’s own)M until it converges to the normal
form). Thus one would normally expect malicious enginesgdmbn-convergent.
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Any suitable normalizeN will be convergent and therefore terminating. Moreoveg, ‘therfect” normalizer
will be such that the equivalence relation inducedMyis the same as that induced By. In particular, all
members of the viral set reduce to one normal form and no nemimer reduces to this same normal form. These
observations are used to formalize NCP=in TRS terms and &huey be treated as a problem of transforming
M into a suitableV.

NCP= as a TRS transformation problemGiven a finite, possibly conditional rewrite systémthat accurately
models a semantics-preserving mutation endiheconstruct a rewrite systerdy that satisfies the following
properties:

1. Equivalence:Vz.[z]y = [x]n.
2. Termination: N must be terminating.
3. Confluence: N must be confluent.

The equivalence condition states that for any teymeither3y.y € ]y Ay & [z]n norIy.y & [z]am Ay € [z]n
holds. This implies that, for any term the terms that are related tounder the reflexive symmetric transitive
closure of M remain related ta: under the reflexive symmetric transitive closure/éf and vice versa. The
termination condition requires thahysequence of applications of the rulesdfto some ternt will eventually
halt. The confluence condition implies that if a normal foon $ome term is reached, then this normal form is
unique.

Once NCP=is defined as above it is trivial to see that it is aitddle: it is known that creating an equivalent
confluent TRS from a non-confluent one is undecidable in theeigé case, and since we have not otherwise
restrictedM then NCP= is also undecidable. If the problem is undecidgivien the modelV/, it is surely no
easier withoutl/. Thus it can be said from the outset that the perfect generimalizer will be unattainable for
those classes of mutation engine that are formalizableyusifRS as above. This places at least an outer limit
on what can be expected from efforts similar to Lakhetieal[21] or Christodorescet. al[9].

While this is in a sense a negative result, it is also positivthe sense that it outlines some conditions
when perfect normalizers are possible. From the theorg,khbwn that if such av can be produced, and the
conditions on its conditional rules can be statically corepuit will form a perfect normalizer fab/. Recall that
programs are modeled as terms. The rule¥ @ian be applied to an input progrdmin any order, and eventually
any input will be transformed into the single normal formisféquivalence class with respecto SinceN is
equivalenttaM andM is semantics-preserving, that means all programs norimglia the same form a8 will
be semantically-equivalent t8. Given a single variant aP, one can therefore extract the unique normal form
and test for an exact match to normalized input programs tEisk will yield no false positives or negatives.

Formalizing NCP= in this way restricts discussion only togé cases where the mutation engine can be
modeled as a TRS, as above. This class of malware is not sctedthat it defines an uninteresting problem
space. The problem is not decidable and, as will be shown étidedd, important realistic self-mutating pro-
grams fall in the class. Engines using instruction-suliistit transformations can be modeled in this manner.
Using conditional TRS it is possible to model mutation eegithat perform transformations only under certain
conditions. Probabilistic mutation engines can be subsuim#he framework as well; these engines fire transfor-
mations only probabilistically, that is, only when somedam (or pseudorandom) condition occurs. By making
rule application probabilistic, the engine can turn thenghtt an outbreak takes through the space of variants
into a random walk. Whei' makes only semantics-preserving transformations, piibtiedcan be ignored for
the purposes of normalization since the confluence propegises the probabilistic application issue moot.

2.3 A procedure for solving NCP=

Even though NCP= is undecidable, procedures can be defiaedttempt to solve it—they just can never come
with a guarantee to halt with a correct output. Using the teawriting literature, we define a two-phase pro-
cedure that involves first applyingraorienting procedurg¢o M to ensure termination, and thercampletion
procedureo the resulting system. If the completion procedure hiltsfurns a rewriting system that satisfies the
equivalence and confluence properties and, hence, is aosotatNCP=. We introduce this procedure because:
(2) it may be useful in practice, and (2) the analysis of winengrocedure fails can be used to define boundaries
between problem classes, and thus exposes potential adaks.
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2.3.1 Reorientation; ensuring termination and equivatncAlthough a rewrite rule relates equivalent terms,
the term-rewriting system may apply the rule in only onedtitn, namely, the direction indicated by the arrow in
the rule. A rule is said to be “reoriented” when the applicatilirection is reversed, i.e., reorientation transposes
the left hand sidel() for the right hand sider(). A reorienting procedurés a procedure that assigns orientations
of the rules in a TRS such that the reduction procedure of 8 iB guaranteed to terminate. To ensure that a
set of reoriented rulea/? is terminating, it is sufficient to show that for every diredtrulex — y € M?, = > v,

for somereduction order> on terms [3].

The well-founded length-lexicographi@rdering is frequently used to reorient string rewritingtgyns [3],
i.e., on systems with only ground terms. The reorientatimt@dure traversek/ and reorients the rules whose
right hand sides are length-lexicographically greaten their left hand sides. So long a$ has no identity rules
(rules of the formz — z) the resulting system/? is terminating because any rule application will decrehse t
length-lexicographic size of the term being reduced, aydiaite term cannot be endlessly reduced in length. In
certain cases, the ordering can be extended so it can be nsgdtems using variables. In the case of the TRS in
this paper, by inspection we know the reoriented systenidevihinate (we can define an appropriate ordering
on the variables being used; also they are equivalent tdiong shorthands, so that rules with variables can be
replaced by a finite number of rules using only ground terife)le[1 shows a fragment of an example rewriting
system. The last column shows the decision of whether téengithe rule. Note that the conditions of the second
column arepostconditions for the code on the left hand side of the rulestThahe conditions shown must
hold whenever the end of thigblock is reached. A “T” means the condition is always true, ithat the rule is
effectively unconditional. Rulé/; is to be reoriented becausgis length-lexicographically greater than So,
for example M (the reoriented rul@/,) is “eax is dead | mov eax, imm; push eax — push inmnf.
Here, aregister is dead when its value is not needed beferegfister is assigned [2].

| Rule |

Label  Condition | i — 15 | Reorient?
push eax

M T nov [regl+imi, reg2 —  nov  eax, imm y
nov [regl+eax], reg2
pop eax

Mo eax is dead push imm — nobv eax, imm y
push eax

Mg eax is dead push eax — push eax y
nov eax, inmm

My T nop — n

Table 1 Reorienting example

Since the reflexive symmetric transitive closure\éf is identical to that of\/ (no rules were modified apart
from their orientation), the set of equivalence classesddfby M/t is identical to that defined by/; in other
words,Vz.[z] s = [z]¢. Hence M? satisfies the termination and equivalence properties,wduie part of the
requirements for a rewriting system to solve the NCP=.

2.3.2 Completion: ensuring confluenceConfluence is decidable for finite terminating TRSs [3]. IfRSFis
not confluent, then additional rules may be added to it to ntfaéeystem confluent. A process of adding rules to
make a TRS confluentis called a “completion procedure.” Bisalting confluent TRS is said to be “completed.”
Recall that the problem of completing a TRS is undecidabléhéngeneral case, so that any procedure at-
tempting it cannot be guaranteed success. In practicaértmtrying to ensure confluence may be a matter of
selecting one or more completion procedures to try, and theosing suitable results, if they complete. The
Knuth-Bendix completion procedure (KB) [18] is the mostyaient method used in term-rewriting literature.
Detailed discussions of this procedure are available ¢leesv[3, 18]; it is explained below only to the degree
needed to later enumerate sub-classes of NCP=.
The KB procedure works to resoleedtical overlapsbetween rules by adding new rules. For finite terminating
ground TRSs, the left hand sides of a pair of (not necessdisijnct) rules are said to critically overlap if the
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UUDURIPIPRREES S Critical Pair
M ) New Rule ‘
e "2 push i mm
: : nov eax, inmm
: nov eax, inmm
, push eax
1 oV eax, [mm LMy nmov eax, inmm M,
——————————————————————————————— —_— .
push eax — | push imm
. -
Critical Overlap
Fig. 5 Completion step fon/s and M
| Rule
Label Condition [T —
push eax ]
N1 T nov eax, inmm — nov [regl+inmm, reg2
nmov [regl+eax], reg2
pop eax
N> eax isdead| nov eax, imm — push imm
push eax
N3 eax isdead| push eax — push eax
nov eax, inmm
Ny T nop —
N5 eax isdead| push inm — push imm
nmov eax, inmm
push imm )
Ns T nov eax, inmm — mov  eax, inmm
nmov [regl+eax], reg2 mov  [regl+imi, reg2
pop eax

Table 2 N, the completed version of example rule 3t

prefix of one is identical to the suffix of the other, or if oneaisubterm of the other. Critical overlaps indicate
conflicts in a rewriting system that may make the system ramftgent [3]. For the example, in Talile 4} and
M critically overlap at push eax”. The same is true fod/} and M:. KB resolves such critical overlaps by
repeatedly adding rules to the system in fashion similah& $hown in Figll5. The figure shows that KB adds
the rule

push imm
nov eax, imm

to the set. KB is not guaranteed to terminate. However, ib#slterminate then the TRS it produces will be
confluent.

For the TRS of82. Evol , if the left hand side of some rule has, as a suffix, the prefthefleft hand side
of some other rule, it is not enough to conclude that the rofiigally overlap. Neither is it sufficient for the
left hand side of some rule to be a subterm of the left handd@idaother. This is due to the fact that either of
the rules may be conditional. It may even be the case thatahdition of one is a negation of the other. Rules
M{ and M from our example (see TaHe 1) overlap puéh eax ; nov eax, inni. This overlap does not
create any conflicts between the rules becau§ecan be applied only when registesx is dead whileM? can
be applied only wheeax is live. The completion procedure terminates on the TRS bféld, and returns the
confluent system of Tabld 2.

— push imm
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2.4 Classes of mutation engines

Sectiorl® showed that it will not be possible to automatjcedinstruct a perfect normalizer for certain mutation
engines. Nonetheless, certainly the viral setssfumetypes of mutation engines can be normalized, and some
mutation engines present more challenges for construntingalizers than others do. The definition of NCP=
makes it possible to partition normalization constructiwablems into well-defined problem classes. Several
distinct classes of solvable NCPs can be delimited by natorglitions on rule sets which make it possible to
prove that NCP= can be solved. Note that a condition on a etl@entifies a subset of the universe of TRSs.
Classes of program normalization problems that fall oettie scope of NCP= can be defined according to how
they fail to meet conditions that permit automatic solusidinowing about these classes is important in defense
since each class can indicate when a given technology ocoapipcan work, and each class formalizes a possible
attack vector for defeating (automatic) normalizer cangion defenses.

Several classes of NCPs are listed in the following subiaest each is defined by noting when NCP=
is known to be solvable and by recognizing conditions in Wwhicutation engines are not formalizable using
TRSs, as above. There may be other restrictions or extenianyield further sub-classes (e.qg., using different
rewriting systems such as string, graph, or constrainedtieg/systems), however the present list is not intended
to be comprehensive in this respect. Rather the aim isatitie definition of NCP= to explore the contours of the
local problem space surrounding NCP=. Listed in each clespassible attacks on the normalizer constructor
that can be associated with the class. That is, regardleskether the normalizer construction is automated or
not, these are attacks that can make the problem more difficul

2.4.1 NCPZ'V: Formalizable without using variables.Consider the class of TRS as in NCP=, but without
variables. For any mutation engine that can be modeled sioly a TRS (using a finite set of rules) the two-
phase procedure of Sectibnl2.3—i.e., the length-lexiqatjcaordering followed by Knuth-Bendix completion
procedure—is guaranteed to complete, and the result valitera perfect normalizer. This NCP problem sub-
space, denoted by “NCPZ""| is therefore decidable.

A strong attack would ensure that transformations are cexgriough that variables must be used to correctly
model it.

2.4.2 NCPZ'C9: No critical overlaps. Consider the class of TRS as in NCP=, but without overlapsidéfas
critical in the Knuth-Bendix procedure. For any mutatiogiee that can be modeled in this way, the two-phase
procedure of Sectidn 4.3 is guaranteed to terminate, argdfiicreate a perfect normalizer. This NCP problem
subspace, denoted by “NCP2”, is therefore decidable.

A strong attack would ensure that critical overlaps areqes

2.4.3 NCP=¢: Conditions or assumptions are not computablén defining NCP=, no explicit guarantee was
made as to whether the conditions attached to the ruléé wbuld be feasibly computable. However the pro-
cedure described in Sectibn.3 for constructidrom M does not alter the conditions, so if the conditions in
M are feasibly and statically computable conditions in theegal case, then those &f are too. Significantly
though, it can be the case thiatcan determine the appropriate conditions yet, for pralgpiceposes the normal-
izer may not be able to, or be permitted to. Specificdllyzan make use of assumptions or encoded data rather
than compute the conditions explicitly, whereas the noizaamay not be able to [33]. In factB2. Evol does
not calculate its conditions at all; it only makes use of afly crafted property of the code. Specifically, it
utilizes implicit indications of register liveness to agtdhe need to extract it from its own code. In theory, any
assumption’ makes, the normalizer could make; in practice, if multipteikar engines use opposing assump-
tions it could lead to a new and potentially unsolvable peabbf deciding on the correct assumptions. When
these conditions are undecidable, the mutation engiredaliside of the class defined by NCP=.

One may also wish to restrict NCP=to only those cases wherédasible for the normalizer to evaluate the
conditions during normalization. In practice, the quastibfeasibility may not be the same for the engine as the
normalizer, as the normalizer may be required to be sigmifigdaster. The enginé&’ may gain an additional
computational advantage in that it can directly inspectstage of the running system; this may make certain
conditions much easier to check as compared to static asly¢hile the normalizer is free to try to emulate the
program, of course, to discover the same information theesaay, this may entail such a high overhead as to
make the approach infeasible for the normalizer.
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A strong attack would ensure that hard-to-compute contlitiare attached to some of the rules. An even
stronger attack would ensure that these conditions arecnorputable using known techniques.

2.4.4 NCBE£: Semantics non-preservation.The formulation of NCP= explicitly considers only mutatien-
gines whose rules preserve program semantics. In parsthiscause the conditions attached to rules can relate
to operational semantics. For example, conditions basedgister liveness are defined in terms of the compu-
tational interpretation of the program statements. Thasan the rewrite rules themselves, however, are purely
syntactic. We required, however, that the rewrite rulesriuee that term equivalence maps to program equiva-
lence. In this way the NCP= approach is both like and unlikeptlrely syntactic formal language-based approach
of Zuo et. al[15] and Filiol [14]. In their formulation, the rewrite rudeare syntactic transformations between
(uninterpreted) strings of terminals and non-terminadshie NCP= formalization, the left and right hand sides
of the rules ofM andN are, by definition, intended to be considered equivalentapkhceable both in the term
rewriting sense and the program semantics sense.

It would be possible to discard the requirement that thesrold/ be semantics-preserving, as many mutation
engines that do not preserve semantics can be modeled irathpraposed in the paper. For example, an engine
might turn gpush into apop, and nothing would be amiss from the term rewriting pointiefw The equivalence
class unded (i.e., the viral set) would merely contain programs thatrareequivalent—as it should. However
doing so can make it difficult or impossible to reason meafuiihgabout the problem of malware detection. For
this reason, our formulation of NCP= requires that semarii& preserved in the rule set bf. Engines that
modify program semantics are relegated into the superbl@gs:.

An example may help illustrate the problem. Suppose thathaisea semantics-preserving mutation engine
M, to which one adds the following probabilistic rule:

rg: rand() <273 | P — B

whereP is the whole program itself anfl is a known benign program (perhaps the common progranepad. exe).
Call this new augmented TR3/£+". The probabilistic condition on the left hand side assthes the likelihood

that this rule fires is extremely small. Nonetheless, witpeet to[t],,+, the benign fileB is equivalent to the
original malwareP, since there is a rule-g) that makes them equivalent. Any normaliZés- for this set will
induce the same equivalence relationds-, so the normal form foB will be identical to the normal form of

P. Practically, though, one may wish to say that matchihghould be considered a false positive, yet from a
theoretical point of view it is not. As a second example, adersadding probabilistic rules of the form

rand() <273 | op(argl, arg2) —s X

for every possible operatiowp, i.e., low probability rules that will map any possible pram instruction into
the empty string. The normal form for such a program is thetgrsfping. Granted, these are perhaps imaginary
examples and, if a human were creating the rule set is magtim engine, then she might choose to exclude
rules such asp. Still, the examples serve to illustrate the problems tlaat @ccur when rule equivalence does
not map to program equivalence.

Requiring semantic equivalence restricts the problemespiaat NCP= defines in significant ways since
certain important classes of mutation engine cannot bedbred by it. These include:

1. Engines that introduderelevantexternally observable behavior, that is, computationsdbanot affect the
malicious behavior, but which nonetheless can be detecihdwi examining the internal workings of the
executing program. For example, an engine may contain aftranation that inserts code to: create a file,
write random content to it, and then remove the file some tater.| While one might reasonably argue that
the inserted code does not change the essential natureiipeam, it certainly changes the behavior. If the
temporary file is not removed, or if the file writing causesetable side effects (writing to error logs on
disk failures, for example) the variants are not functibnat semantically equivalent.

2. Engines with bugs or limitations that prevent them fronrectly performing semantics-preserving transfor-
mations. This is a significant omission in the sense that it bearare to find complicated mutation engines
that are completely bug free.

3. Evolutionary engines, i.e., ones that make changes tfutheionality of the program as they reproduce.
Such changes could be changes to the payload, the engilfisaitdmth.

4. Open-world engines. A closed-world engine operates wiitly the information contained in its own pro-
gram. An open-world engine may utilize information from #mvironment. An example is an engine that
downloads transformation rules from an external source.
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In some of these cases, no approach based on term rewritihigengatisfactory because it is not feasible to
model the mutation engine using a reasonable rule set {eeggpen-world engines). In cases where it is pos-
sible to model the engine as a term rewriting system that doepreserve program semantics, the normalizer
construction approaches of this paper will work as expeetéti the possible exception of the first class above,
they may just fail to map meaningfully onto malware detetfooblems.

From the list it appears that, when semantics are allowetiange, a Pandora’s box is opened in terms of
attacks to normalization.

3 Approximate solutions to the NCP

There exist classes of mutation engines for which perfeatabzers can be constructed. However even when a
perfect normalizing rule set can be constructed, it may Beasible to implement the normalizer in a practical
implementation. The conditions attached to the rules magdeostly, difficult, or even impossible to calculate in
the general case. Moreover, there are mutation enginesi¥N&@ which it is difficult to construct a normalizing
rule set (e.g., the procedure of Secfiod 2.3 does not halt).

These observations motivate the search for approximatéi@os to NCP=. Precise solutions to NCPs pre-
serve the equivalence classesiéfand produce only a single normal form for each equivalerassels. Approx-
imate solutions may create multiple normal forms for anyegiequivalence class, or they may fail to ensure
that the equivalence classes/df are preserved byv. Three approximations are introduced in this section. For
each, implications (in terms of errors introduced) are axwd, and practical considerations are outlined for
application in malware detection.

3.1 Using an non-completed (non confluent) rule set

Since the completion process of KB—which repeatedly adigs o //*—may or may not halt, restrictions are
normally imposed: if the completion procedure does not iieate within a “reasonable” amount of time, or if the
repeated addition of rules yields a rule set that is simphyiéoge to be useful for normalization purposes, then it
may be reasonable to preempt the procedure and seek ditermaans. If these also fail, the non-conflugft
might be considered for the normalizer.

Normalizers whose rule sets are not confluent will be appnaté since non-confluence of the terminating
systemM ¢ implies that there may be some equivalence classés awhose members reduce to different normal
forms unde\/t. More specifically, the members of the malware’s equivadariass—the variant offspring—may
have more than one normal form. The actual number of thesaaldorms depends entirely on the specifics of
the malicious program and its transformation system.

It may be practically useful to use a non-conflugiit for malware detection. It is important to note that
while using the non-completed set may result in multiplenmairforms, so long as condition checking is done
correctly it is not possible for a two members of differenizglence classes und&f be normalized to the same
normal form. This is because terms that were unequal uhflare still never joinable unde¥/! since none of
its rules break equivalence. This is important for detectmcause even though it is approximate it can never
create a false positive. Moreover, even whdii yields more than one normal form for the malware variants,
it may still be able to reduce the number of variants froraatnumber to a tractable number. In addition, the
different normal forms for the equivalent setBf(i.e., that ofP(.5)) may be similar enough that matching them
using conventional means (e.g., signatures) may be feamiten if there are many of them. In any case, it is an
empirical question as to whether the results are sufficemivhatever purposes the normalization is being used
for: the reduction in the number of variants to consider, Hrepossibly increased similarity of variants may
make it possible to use detection methods that would notwike work without the normalization.

3.2 Incorrectly evaluating conditions

Ordinarily, the term rewriting process requires that anpditions attached to the rules &f must evaluate
to true before they are allowed to fire. These conditions emuire knowing certain program properties in
order to evaluate them correctly. Such properties incluatgrol or data flow, register liveness, and points-to
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information [2]. Such information can be challenging toraxt [22]. Most interesting extraction problems are
undecidable. Known analyses may fail to return accuratdteegarticularly if obfuscation is used specifically
to thwart static analysis techniques [11]. It may be reaklm&owever, to approximate the condition checking.
For example, a default decision on liveness might be takesnvwihe liveness is not calculable precisely within
an allotted time. Or perhaps no condition checking is pentad at all.

Such a normalizer will be approximate because it may fire @wilen its condition does not hold, in which
case the program semantics may be altered. Such changessaoétrir multiple normal forms for a given equiv-
alence class. In addition, the changes can alter the equisliclass of the program. In some cases, therefore, a
program in the malicious class might be transformed intoramalicious class, and vice versa. In some cases a
default rule or simple heuristic might keep the number obmect rule applications tolerably small.

It may be practically useful to use such a normalizer for naaévdetection. In some cases the improper
rule firings may not change equivalence classes betweenimaliand non-malicious, meaning no false matches
occur. Moreover, the false matches might fall primarilyinnly one class (false positives or negatives) and there
may be a greater tolerance in practice for that class of.gfioally, it is a practical issue of whether the error
rates for the normalizer are suitable enough for applicafitne practical implications for multiple normal forms
are the same as when using an non-completed rule set.

3.3 Priority scheme

If a TRS is confluent then rule application order does notaffee eventual result. Conversely, in a non-confluent
system there exist different rule application orders thaldydistinct terms which are not joinable. According
to Visser [32], arule application strategycan be imposed on a non-convergent TRS to make it behave like a
convergent one. If successful, the strategy chooses rd&riogs that yield only one normal form for any given
equivalence class. This possibility is important if onehs to use a non-convergent rule in cases where the
correctness of the condition checks cannot be guarantéedule application strategy may allow one to choose
the ordering of rules that minimize the extent of errorsddtrced by the approximation. This motivated our
design and use of a priority scheme that seeks to reducektiidhntiod of false matches due to non-checking of
conditions.

Our proposed priority scheme works as follows. First, tigahset N’ of rules is partitioned into two subsets
Ni; andN(,, whereNN;; contains the unconditional rules &f, and N, the contains the conditional rules. For the
rule set in Tabl€l2N{, = {N1, N4, Ng} andN{, = {N», N3, N5}. When considering a rule frodv(,, assume
the system uses a fallible or heuristic condition checkirfstance, perhaps the condition is not checked at all but
is instead assumed always to be true. A suspect code segnmemimalized with respect ¥’ by giving priority
to rules of N, over the rules ofV/.. That is, whenever a rule frodv/, is applicable on a term, it is chosen for
application only if no rule fromV/; is applicable.

The priority scheme capitalizes on our knowledge that thesrin N/, preserve semantics, whereas those
in N may not. Assigning a lower priority to the latter guaranttfest the former will be applied before any
(potentially) semantics-altering transformation is @bl The intent is to avoid the case where a conditional rule
should have fired before an unconditional rule. Such erraditimns occur on critical overlaps between rules
of N{; andN{,. They will occur more frequently when conditions are notniggprecisely evaluated since, if the
condition were evaluated correctly, the rules might not exerlap critically. The priority scheme does nothing
to avoid the problems caused when the overlaps are wittierel/, or N/;; using this priority scheme with an
exact condition checker, therefore, cannot be expectadpoave the approximation.

The practical implications for using normalizers with sicpriority scheme are the same as for using non-
completed rule sets and approximate checking of conditidhat is, multiple normal forms may be produced
for equivalence classes, and false matches may occur du@teeeus application of rules that join terms that are
not joinable under=—. These approximations occur whenever the priority schemes dot result in the correct
rule application order, or when the condition is incorngctilculated.

4 Case study

A case study was performed in order to explore the feagibilitthe introduced normalization techniques in
realistic settings, and to help quantify the impact of thepmsed approximation techniques. For the study we
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Normalizer | Rule Set  Priority Scheme Condition checking?
1° No no priority scheme no
D No scheme of Sectidnd.3 no
I} N scheme of Sectidnd.3 no

Table 3 The three normalizers used in the study

selected a self-mutating virus and then constructed slavenaalizers for it using the different methods outlined
in previous sections. Variants of the virus were collectgdltowing it to replicate in a controlled environment,
and the normalizers were applied to the variants. Measuees then taken of the number of normal forms and
the amount of differences between equivalent normal follfhese measures were then inspected for indications
of the impact of the approximations, particularly with respto their likely practical utility.

4.1 Subject and preparation

We obtained a copy of a 12,288-byte long variant of an exéteitanfected withA82. Evol , from theVX Heav-
ensarchive [1]. The length of this sample matches the publisheel of the “first generation” variant according
to Symantec’s report [28]. We refer to this variant asiEve The engine of this virus is a relatively sophisticated
one—itis the first entry listed by Szor in his text on antiwg defense as under the section “More Complex Meta-
morphic Viruses and Permutation Techniques” [29]. It sints instructions with equivalent code segments,
inserts irrelevant code at some sites, and replaces immeegiierands with arithmetic expressions computing
them [20]. By calculating the number of distinct choicesrfegister and constant assignments in the places these
can vary, we conservatively estimated that the Eve variantgenerate at lea$0%¢ second generation vari-
ants,101:339 third generation variants, and*-8%! fourth generation variants. The behavior of the payloadhisf t
particular virus makes it possible for some emulation-dasehniques to detect its variants [30].

Several factors makes2. Evol a suitable study subject. First, we are able to make it raf@diand safely
experiment on it in our secure environment. Second, its tiautangine is capable of generating enormous
numbers of variants, and the variants it creates are significdifferent from each other. This makes it a realistic
study subject in that it is nontrivial to develop form-baséghatures for the entire viral set. ThindB2. Evol 's
mutation engine uses a conditional transformation systehdontains critical overlaps; this makeg2. Evol
a suitable candidate for illustrating and evaluating themadization approaches. Furthermore, the conditions
attached to certain rules require knowledge of registeniass in order to be evaluated. Since register liveness is
undecidable (and costly to even approximate) it is a réab#iation in which approximation may be required.

Over 50 offspring were generated spanning 6 generations. tP@se were selected, taking multiple samples
randomly from each generation, except for the Eve and 6tlerg¢ion, for which there was but one sample to
choose from.

4.2 Materials and protocol

We first extracted the transformation rules/df. Evol by manually reading the code, and occasionally tracing
its execution in a debugger. We then implemented these aslesterm rewriting syste/. Next, we used the
reorienting procedure of SectibnP.3 to transfa¥frinto an initial normalizing rewriting systedVy. Ny was not
completed.Ny consisted of 55 rules, five of which did not participate in amgrlaps. A second normalization
set N; was constructed by manually adding rules to complete thee set with respect to the priority scheme
of SectiolC3B. That is, when using the priority scheme fde application, the system is convergent. In total,
two rules were added. We selected this completion approachuse it was apparent that the Knuth-Bendix
procedure would not terminate on the rule set, as each rdiéi@ucreated new critical overlaps.

Three prototype normalizers were implemented usingtkle [12] system version 10.4 (2005/01/05). These
are named’, I) and I}; they differ in the rule sets used and the priority schemeleyegl. I° and I} both
used theV, rule set, i.e., the non-completed oﬂg.andI; both used the priority scheme. None implemented
condition checking. Tab[d 3 summarizes these normali2eiditional implementation information may be found
in Mathur [23].

Each of the normalizers was applied to the 26 variant samalesthree different groups of measurements
were collected. The first group relates to the sizes of thenabforms. These aréASNF, the average length



Lorisuuctrly iaivwalc INOHTialZclis Usitly 1€ mewrnury

of the normal forms, anMSNF, the maximum size of the normal forms. Both measures areetkfinterms

of instructions and are averaged over a given generatiom sébond group relates to how different the normal
forms are, on average, from the normal form of the Eve sariplese aretNC, the number of lines, on average,
that the normal forms differ (as measured by the common pragi f f ), andPC, the average raw percentage
of sequence commonality between the normal form of the Bwe flae normal form of the sample variant, that
is, they list the average alSN F(Eve)/ASN F'(z) for all samplest within any given generation. The third
group are simple performance measures of execution ¢ 4nd the count of the number of rule applications
performed during normalizatiod C).

4.3 Results

Tabld3 lists the results splitinto three sections. The empisn lists the measures relating to differencesin normal
forms compared to the Eve’s normal form, the middle sectiowide measurements of the normal forms created
using the prioritized normalizer, and the bottom sectiavjtes execution information for this prototyﬁé.was
convergent: all variants in all generations reduced to #imes2,166-line normal form. As a result, the measures
are not listed in TablEl4. The running times were similar fibppeototypes, so only the prioritized version is
listed.

| Eve 2 3 4 5 6
ASO 2,182 3,257 4524 5788 6,974 8455
LNC 1° 0 0 108 316 803 1129
LNC 10 0 0 10 16 24 37
pCI° 100.00 100.00 95.25 87.27 72.96 65.74
PCI? 100.00 100.00 99.54 99.27 98.90 98.32

MSNF 10 2,167 2,167 2,184 2,189 2,195 2,204
ASNF I 2,167 2,167 2,177 2,183 2,191 2,204

ET I? 25 3.0 4.3 6.3 8.0 11.2
TC I 16 533 980 1472 1,902 2,481

ASO=average size of original (LOC); LNC=lines not in common; PC=percentage com-
mon; MSNF=maximum size of normal form (LOC); ASNF=average size of normal
form (LOC); ET=execution time (CPU secs); TC=transformation count

Table 4 Results of normalizers on variod82. Evol generations

4.4 Discussion

Because the case study is limited, any generalizations beusntative. The study serves as a useful feasibility
test, particularly of the approximations. Furthermo#&2. Evol is a good representative sample, so the posi-
tive results are at least suggestive of some usefulnesafidasmutation engines. Other complex viruses, like
RPME, Zmist, Benny’s Mutation Engine, Mistfall, Metaphetc [5, 31, 34, 35] have transformations similar to
that of WB2. Evol , and it appears likely that for some subset of self-mutgpiragrams, a syntactic normalizer
built according to the strategy in Sectibnl2.2 will normalell variants sufficiently well for ordinary signature
matching to succeed in practice.

Regarding feasibility, Table 4 shows that, even without ptation or condition checking, the prioritization
scheme creates normal forms that are highly similar—maaa 88% in common. The differences indicate the
possibility of false positives or negatives. This resulswapected, as the priority scheme could not be a complete
substitute for an accurate condition-sensitive rule saluator. Nevertheless, the high level of similarity sugges
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the likelihood of false matches may be low in practice. We uaély inspected the differences between the normal
forms of various generations and the normal form of the Ewel @ the Eve itself) to assess the amount and
type of differences. We found that incorrect rule applmatoccurred at three and two sites for tfﬁeand I;
prototype, respectively. The chances seem remote thatgrgmmowould be found on an actual user’s computer
which is benign yet different frorm82. Evol on only three lines.

Regarding the impact of the priority scheme, it appearsititain make a relatively sizable difference in the
amount of code that is incorrectly normalized, particyléor later generations of Eve. For instance, for the fifth
generation, the priority increased the accuracy over 26gmage points over the non-prioritized version. This
relates to the number of sites at which the conditional rulg tve fired incorrectly.

Regarding practicality, the timing information reflect® tfact that our prototypes are proofs-of-concepts:
they work on ordinary textual disassemblies, and are umopéid. The time growth curve is shallow for the sizes
of samples involved, taking less than five times as long offetfgeest sample, which is almost four times as large.
Moreover, it may happen that the upper end of the asymptatieeds not problematic in certain practical cases
where input growth is constrained. For instance, wki@. Evol always grows in size, growing very large is
not a good survival strategy for malware, so some recentnsetating malware include transformations that try
to keep the size of their code within reasonable limits bylypp ‘code-shrinking’ transforms [29].

One might find fault with the fact that the normalization teicjue depends upon having a formalization of
the specific mutation engine. This means the technique tdenexpected to find malicious programs for which
the mutation engine is unknown. While this certainly is aués the limitation may be tolerable. Signature-based
techniques generally cannot detect novel malware eitherseynatures are instance-specific rather than family
specific, yet these techniques have proved to be a usefuldtaryy when the signature database can be updated
at the same rate as malware production. Given that new rontatigines appear at a much lower rate than
ordinary malware instances, an engine-specific schemessaggast plausible.

One might also argue that modeling the mutation engine canddifficult, or too costly. In response, we
first note that mutation engines evolve slowly—much slowantthe worms and viruses themselves [29], so the
number of new mutation engines released in a year is low dntugnake them amenable for such analysis.
Second, the mutation engines tend to be reused, often iothedf libraries. This is because, at least for now,
only certain malware authors have both the motivation amal#ity of writing transformation engines with a
sophistication level that forces the use of nontrivial naligers.

5 Relations to other work

Normalization of input is a concern common to many domaimguiding databases, and text and speech process-
ing. Program normalization is commonly performed on soaotke in the context of plagiarism detection and so-
called “code clone” detection. The normalization aids rittg copied code by removing detail that is considered
unimportant. Variable names, white space, and syntaatmg@re all commonly normalize@CFi nder [16],

for example, normalizes input code tokenizingnmany features. As with the present work, each of these nermal
izations attempt to defeat attempts at obfuscating thetfi@atttwo programs are variants in disguise. The main
difference is that these normalizations generally attatktively superficial differences in the code, and are not
expected to aid in normalizing comprehensive semantiesgiving obfuscating transformations performed on
the code.

In the plagiarism and code clone literature, some more cioateld obfuscations are accounted for by ab-
stracting to a comparison domain in which the differenceshmnormalized out (e.g., Baxtet. al[4]). Muller
et. al[24] present an approach to matching programs which atetogtccount for obfuscating transformations.
They define a program similarity metric based on the sintifaf specific tree-structured data flow structures.
Unlike the approach in the present paper, their approachoisvated by the supposition that these data flow
structures will be relatively constant even when the progheas been transformed via obfuscators. They do
not explicitly consider transformations in the style of kmomutation engines. However they also define nor-
malizations on their structures which they hope will alloucsessful matches to variants created through the
obfuscators.

Specifically malicious program normalization approachessarveyed in Sectidd 2. The works by Lakhotia
et. al[21], Bruschiet. al [6], and Christodorescat. al [9] share several attributes: they require complex static
analysis (e.g., control flow or liveness), and utilize tfan®ations that are not specific to a particular strain
of malware. While these approaches do not depend priori knowledge of the mutation engines they are,
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nonetheless, limited by the specific techniques they atilizhese methods do not theoretically guarantee that
equivalent variants will be mapped to the same normal foanekample, there is no guarantee that the compiler
optimization techniques will yield the same optimized peog for any two arbitrary variants. They leave open
the possibility of defeat by introducing variations thasere the optimizations yield different optimized pro-
grams. In contrast, the present work is specific to a mutaraine, but suggests that deeper semantic analysis
may not always be necessary. An interesting research qoestises as to the tradeoffs and benefits of general
normalization rules versus ones targeted towards spedifiation engines. It is also an interesting question as to
whether the precision offered by the completed normaliaffsets the initial cost of developing the normalizer.
The static techniques introduced in the paper can be coedragith static detection techniques that use
generic behavior patterns that can detect malicious pnegeven in the presence of variations in their code.
Classic emulation-based techniques also look for behaatierns, but they do so through dynamic methods,
which may be attacked. Rather than emulation, Christodarets al[8] and Kruegekt al.[19] proposed the use
of static program analysis methods for detecting potdpt@dfuscated variants of specified behavior patterns.
Works in this vein constitute pursuits of a more capablegpatinatcher, rather than a normalization approach.
The normalization and behavior-match approaches are @ngpitary and can be used together.

6 Conclusions

This paper presents an approach to construct a normalizepfarticular class of mutating malware by leveraging
concepts and results from term rewriting literature [3jvéts shown that mutating malware which use instruction
substitution transformations or insert irrelevant instions can be modeled as a conditional rewrite system. The
problem of constructing a normalizer for this system thempsnt the problem of constructing a convergent
rewrite system by starting from the mutation engine’s ride $he latter problem has been well-studied: its
problems and requirements for solution are known.

A general method was proposed for constructing either exagbproximated normalizers. When the rule set
is completed, all variants are transformed into a singlemaform. This proves that it is sometimes possible to
develop “perfect” normalizers for the nontrivial class ofitating. The case study results suggest that this may
be feasible in practice. Thus, the method has the potentalgment current static signature based scanners to
detect automatically-constructed mutants. That saida# moted that not every rule set can be feasibly completed
using an automated completion method. An analysis of thelitons when the completion procedure breaks
down revealed attack points that might potentially be eix@tbby malware authors. Research is still needed to
understand the potential attacks and their possible rexaedi

Finally, the approximations show that the general approaai have practical merit even when completion
and accurate condition calculation cannot be guaranteezh without completion, and even without correctly
calculating conditions, the prioritization approach giedl encouraging results on the test case. Though the nor-
malizer did not map the 26 variants to a single normal forrargtwas over 98% similarity between the normal
forms and the original program. Since the approximated atiners forgo expensive analysis, they may be better
suited in a scanner requiring real-time performance. leuntbsearch is needed to understand the practicality of
using uncompleted rule sets, and for approximating theaaitelitions.
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